Course in Introduction to Data Science
100% Online
200 horas
260€
Course in Introduction to Data Science
    Course in Introduction to Data Science

    Course in Introduction to Data Science

    100% Online
    200 horas
    260€
    Seguridad y confianza en tus pagos online.

    Presentación

    The realm of data science is experiencing an unprecedented boom, with companies across industries seeking skilled professionals to harness the power of data for strategic insights and decision-making. Our Course in Introduction to Data Science is designed to equip you with the essential skills and knowledge to thrive in this dynamic field. You will explore foundational concepts, tools, and techniques that will empower you to analyse complex datasets and derive meaningful conclusions. As demand for data science expertise skyrockets, participating in this course will not only enhance your analytical capabilities but also open doors to a vast array of career opportunities. Dive into the world of data and become a sought-after expert who can transform data into actionable intelligence. Join us and be part of the data revolution.
    Qs World University Rankings

    Universidades colaboradoras

    Para qué te prepara
    The Course in Introduction to Data Science equips you with the skills to analyse and interpret complex datasets, allowing you to make informed decisions. You'll learn to use statistical tools and programming languages to extract meaningful insights from data. This course enhances your ability to apply data-driven solutions, identify trends, and communicate findings effectively, making you a valuable asset in any data-oriented role.
    Objetivos
    - To understand the fundamental concepts of data science and its applications. - To learn to use Python for data manipulation and analysis effectively. - To gain skills in data cleaning and preparation for analysis tasks. - To explore and interpret data using statistical methods and visualisation. - To develop the ability to communicate data-driven insights clearly. - To acquire knowledge in machine learning techniques and algorithms. - To apply data science principles to real-world problem-solving scenarios.
    A quién va dirigido
    The Course in Introduction to Data Science is designed for professionals and graduates in related fields who wish to enhance or update their knowledge in data science. Ideal for those seeking to understand fundamental concepts and tools, this course provides a solid foundation for leveraging data in their current roles.
    Salidas Profesionales
    - Junior Data Analyst in various industries - Data Visualisation Specialist for marketing firms - Entry-level Data Engineer for tech companies - Research Assistant in academic institutions - Data Consultant for small businesses - Business Intelligence Analyst in finance sectors - Data Management Assistant in healthcare organisations
    Temario

    UNIT 1. INTRODUCTION TO DATA SCIENCE

    1. What is data science?
      1. - The role of data scientists
      2. - Stages in the data science process
    2. Necessary tools for data scientists
    3. Data science - Cloud computing
      1. - Defining the concept of cloud computing
      2. - Characteristics of cloud computing
      3. - cloud models
      4. - Virtualization
      5. - cloud storage
      6. - Reliable cloud providers for data science

    UNIT 2. RELATIONAL DATABASES

    1. Introduction
      1. - Advantages and disadvantages of databases
      2. - General concepts
      3. - The entity-relationship model
      4. - The extended entity-relationship model
      5. - Integrity restrictions
    2. The relational model
      1. - The structure of the relational model
      2. - Keys of the relational model
      3. - Integrity constraints
      4. - Normalization theory
      5. - Design of a relational database
      6. - Types of relational languages
    3. Structured Query Language (SQL)
      1. - SQL Features
      2. - Database management systems with SQL support
      3. - Syntax SQL
      4. - Integrity Constraint Specification
    4. MySQL. A relational database.
      1. - Characteristics
      2. - Type of data
      3. - SQL Syntax for MySQL

    UNIT 3. NOSQL DATABASES AND SCALABLE STORAGE

    1. What is a NoSQL database?
      1. - Database
      2. - Relational databases
      3. - Indexes
      4. - Primary key
      5. - Transaction database
      6. - SQL language
      7. - Centralized vs distributed systems
      8. - array
      9. - JSON format
      10. - NoSQL Databases
    2. Relationship databases Vs NoSQL Databases
    3. NoSQL Database Types: CAP Theorem
      1. - Distributed databases: Strategies
      2. - CAP theorem
    4. NoSQL Database systems
      1. - Aggregation models
      2. - Graph models

    UNIT 4. INTRODUCTION TO A NOSQL DATABASE SYSTEM, MONGODB

    1. What is MongoDB?
    2. How MongoDB works and its uses
    3. Getting started with MongoDB: Installation and Command Shell
    4. Creating our first NoSQL database: Model and data insertion
    5. Updating data in MongoDB: set and update statements
    6. Working with indexes in MongoDB for data optimization
      1. - Execution plans
      2. - Advantages and disadvantages of index creation
    7. Querying data in MongoDB

    UNIT 5. PYTHON AND DATA ANALYSIS

    1. Introduction to Python
      1. - Main Features of Python
      2. - Programming with Python
    2. What do you need?
      1. - Installation
      2. - Installed utilities
    3. Libraries for data analysis in Python
      1. - Mathematical and statistical computations with Numpy and Pandas
      2. - Machine learning algorithms with scitik-learn
      3. - Data visualization and representation with Matplotlib
    4. MongoDB, Hadoop, and Python: The Dream Team of Big Data

    UNIT 6. R AS A TOOL FOR BIG DATA

    1. Introduction to R
      1. - R Commands
      2. - R Objects
    2. What is needed?
      1. - Installation
      2. - Additional R packages
      3. - Development environments for R
    3. Data types
      1. - Data reading and import
      2. - Data writing and export
      3. - Functions
    4. Descriptive and Predictive Statistics with R
    5. Integrating R into Hadoop

    UNIT 7. DATA PREPROCESSING AND DATA PROCESSING

    1. Data collection and cleansing (ETL Process)
      1. - Data cleansing
      2. - Characteristics of ETL tools
    2. Statistical inference
      1. - Statistical inference in R
    3. Regression models
      1. - Regression in R
    4. Hypothesis testing
      1. - Hypothesis testing in R

    UNIT 8. DATA ANALYSIS

    1. Business Analytical Intelligence
    2. Graph theory and social network analysis
      1. - Introduction to Graph Theory
      2. - Algorithms for community detection in social networks
      3. - Social network analysis in R
    3. Presenting results
    Titulación
    Claustro

    Alan Sastre

    Ocupa el puesto de CTO (Chief Technology Officer) y formador. Diseña e imparte formación en diferentes áreas como desarrollo web, bases de datos, big data, business intelligence y ciencia de datos. Además, trabaja diaramente con las tecnologías del ecosistema Java, C# y Phyton.

    Dani Pérez Lima

    Global IT support manager de una multinacional con más de 20 años de experiencia en el mundo IT, además de un apasionado de la virtualización de sistemas y de la transmisión de conocimiento en el ámbito de la tecnología.

    José Domingo Muñoz Rodríguez

    Ingeniero informático, profesor de secundaria de ASIR y coorganizador de OpenStack Sevilla con dilata experiencia en sistemas GNU/Linux. Administra clouds públicos y gestiona un cloud privado con OpenStack.

    Juan Benito Pacheco

    Como tech lead, ayuda a organizaciones a escalar sus servicios e infraestructura. Lleva más de 5 años programando tanto en front-end como back-end con JavaScript, Angular, Python o Django, entre otras tecnologías.

    Juan Diego Pérez Jiménez

    Profesor de Ciclos Formativos de Grado Superior de Informática. Más de 10 años creando páginas web y enseñando cómo hacerlas, cómo usar bases de datos y todo lo relacionado con la informática.

    Solicitar información